Inductive Loop in the Impedance Response of Perovskite Solar Cells Explained by Surface Polarization Model.
نویسندگان
چکیده
The analysis of perovskite solar cells by impedance spectroscopy has provided a rich variety of behaviors that demand adequate interpretation. Two main features have been reported: First, different impedance spectral arcs vary in combination; second, inductive loops and negative capacitance characteristics appear as an intrinsic property of the current configuration of perovskite solar cells. Here we adopt a previously developed surface polarization model based on the assumption of large electric and ionic charge accumulation at the external contact interface. Just from the equations of the model, the impedance spectroscopy response is calculated and explains the mentioned general features. The inductance element in the equivalent circuit is the result of the delay of the surface voltage and depends on the kinetic relaxation time. The model is therefore able to quantitatively describe exotic features of the perovskite solar cell and provides insight into the operation mechanisms of the device.
منابع مشابه
Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells
Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...
متن کاملCan ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?
The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower charge recombination in the device. Here, we investigate and quantify the influence of mesoscale f...
متن کاملبررسی اثر فازی آلومینا بر بلورینگی لایه پروسکایت در سلولهای خورشید پروسکایتی
Organic-inorganic perovskite (CH3NH3PbI3), due to an appropriate energy gap to absorb sunlight, is used as an absorbent layer in third generation solar cells. Crystallinity of light absorbing layer plays an important role in the performance of perovskite solar cells and substrate plays an important role on crystallinity of light absorbing layer. In superstructure solar cells, alumina (aluminum ...
متن کاملApplication of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...
متن کاملHigh efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer
Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2017